To download and install the Abinit code click on the following link:
How to download and install Abinit code
To do the band calculation we need 2 input files and a pseudopotential
algerien1970@linux-ml0a:~/abinitio/abinit-tutorials/Si_band> ls
Si_bands.files Si_bands.in si_h.cpi
Si_bands.in
# Crystalline silicon
# computation of the bandstructure
# Definition of the unit cell: fcc
acell 3*10.27 # theoretical lattice constant
# Angstrom
rprim 0.0 0.5 0.5 # FCC primitive vectors (to be scaled by acell)
0.5 0.0 0.5
0.5 0.5 0.0
# Definition of the atom types
ntypat 1 # There is only one type of atom
znucl 14 # The keyword "znucl" refers to the atomic number of the
# possible type(s) of atom. The pseudopotential(s)
# mentioned in the "files" file must correspond
# to the type(s) of atom. Here, the only type is Silicon.
# Definition of the atoms
natom 2 # There are two atoms
typat 1 1 # They both are of type 1
xred # The location of the atoms will follow
0.0 0.0 0.0 # Triplet giving the REDUCED coordinate of atom 1.
0.25 0.25 0.25 # Triplet giving the REDUCED coordinate of atom 2.
ndtset 2
# Definition of the k-point grids
kptopt1 1 # Option for the automatic generation of k points,
# taking into account the symmetry
nshiftk1 4
shiftk1 0.5 0.5 0.5 # These shifts will be the same for all grids
0.5 0.0 0.0 # FCC Monkhorst-Pack (MP) grids
0.0 0.5 0.0
0.0 0.0 0.5
ngkpt1 4 4 4 # parameters that define the MP grid
# Definition of the planewave basis set
ecut 2.5 # Maximal kinetic energy cut-off, in Hartree
ixc 2 # XC potential Perdew-Zunger
# Definition of the SCF procedure
nstep 10 # Maximal number of SCF cycles
toldfe1 1.0d-7 # Will stop when this tolerance is achieved on total energy
diemac 12.0 # Although this is not mandatory, it is worth to
# precondition the SCF cycle. The model dielectric
# function used as the standard preconditioner
# is described in the "dielng" input variable section.
# Here, we follow the prescription for bulk silicon.
# Calculation of the band structure
iscf2 -2 # non self consistent calculation
getden2 -1 # read the charge density
kptopt2 -7 # 7 segments
ndivk2 4 21 16 8 18 11 21 # number of divisions of the segments
kptbounds2 # limits of the segments
0.25 0.625 0.625 # U
0.25 0.5 0.75 # W
0 0 0 # Gamma
0 0.5 0.5 # X
0.25 0.5 0.75 # W
0 0.5 0 # L
0 0 0 # Gamma
0.375 0.375 0.75 # K
tolwfr2 1.0d-12 # tolerance on wavefunction squared residual
nband2 5 # number of bands
enunit2 1 # Will output the eigenenergies in eV
prtvol2 2 # output printing option
Si_bands.files
https://abinit-algerien1970.blogspot.com/2022/02/how-to-calculate-band-structure-of.html
0 Comments